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PSEUDORANDOM VECTOR GENERATION 
BY THE MULTIPLE-RECURSIVE MATRIX METHOD 

HARALD NIEDERREITER 

ABSTRACT. Pseudorandom vectors are of importance for parallelized simula- 
tion methods. In this paper we carry out an in-depth analysis of the multiple- 
recursive matrix method for the generation of uniform pseudorandom vectors 
which was introduced in an earlier paper of the author. We study, in particular, 
the periodicity properties, the lattice structure, and the behavior under the serial 
test for sequences of pseudorandom vectors generated by this method. 

1. INTRODUCTION 

A sequence of pseudorandom vectors is generated by a deterministic algo- 
rithm and should simulate, for practical computational purposes, a sequence 
of i.i.d. random vector variables with a given multivariate distribution. The 
widespread use of parallelized simulation methods has created a great demand 
for good algorithms for the generation of pseudorandom vectors (see [2, 3, 4]). 
This paper is devoted to uniform pseudorandom vectors where the target distri- 
bution is the uniform distribution on the k-dimensional unit cube [0, 1 ]k with 
k > 2. We are interested only in methods that directly generate pseudorandom 
vectors, and not in methods that build up pseudorandom vectors from suitable 
pseudorandom numbers. 

A few such direct methods for the generation of uniform pseudorandom 
vectors have already been proposed in the literature. The matrix method is a 
natural analog of the classical linear congruential method for pseudorandom 
number generation; expository accounts of the matrix method can be found in 
L'Ecuyer [7, 8] and Niederreiter [16, Chapter 10]. An extension of the matrix 
method, the multiple-recursive matrix method, was recently introduced by the 
author [17] and will be the subject of the present paper. One of the advantages 
of the multiple-recursive matrix method is that it leads to larger periods than 
the matrix method. The general family of nonlinear methods was proposed 
by Niederreiter [1 5], and a brief discussion of these methods is presented in 
[16, Chapter 10]. The inversive method is a particularly attractive nonlinear 
method which was introduced by Niederreiter [14] and studied in detail in [18]. 
The inversive method can be viewed as an analog of the inversive congruential 
method for pseudorandom number generation due to Eichenauer and Lehn [5]. 

The aim of this paper is to carry out a detailed analysis of the multiple- 
recursive matrix method for the generation of uniform pseudorandom vectors. 
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As mentioned above, this method was introduced in [17], but the discussion in 
[17] was confined to elementary periodicity properties. Here we study now the 
finer structure of sequences of pseudorandom vectors generated by the multiple- 
recursive matrix method, such as the lattice structure and statistical (almost-) 
independence properties as measured by the serial test, and we introduce and 
analyze appropriate figures of merit. We will even be able to say more about 
periodicity properties. 

We now recall the definition of the multiple-recursive matrix method from 
Niederreiter [17]. Let us first note that we always use Fr for the finite field 
with r elements, where r is a prime power. Now let p be a prime and let 
k > 2 and m > 2 be integers. As above, k is the dimension of the vectors to 
be generated. Let Ao, Al, ..., Am-i be k x k matrices over Fp, where Ao is 
assumed to be nonsingular. We generate a sequence zo, z1, ... of row vectors 
from F k by choosing initial vectors zo, z1, .. , zm-l that are not all 0 and 
using the mth-order vector recursion 

m-i 
(1) Zn+m= Zn+hAh for n = O 1,. 

h=O 

For the sake of easier reference, we call such a sequence zo, zl, ... an (mth- 
order) recursive vector sequence (in Fpk). Now we identify Fp with the set 
{ , 1, . .. , p - 1 } of integers and we derive a sequence uo, uI, . . . of pseudo- 
random vectors by putting 

(2) U =-Z E [0, 1)k for n = 0, 1,. 
p 

The sequence uo, ul, ... defined by (1) and (2) is then a sequence of pseudo- 
random vectors generated by the multiple-recursive matrix method. In practice, 
p is taken to be large. We could of course have included the case m = 1, but 
this case corresponds to the matrix method with which we are not concerned 
here. The matrix method for the dimension km can be used to derive some 
elementary results on the multiple-recursive matrix method (see [17]), but not 
the more intricate results presented here. 

We mention in passing that recursive vector sequences can also be used for 
pseudorandom number generation. This was already pointed out in [17], and 
an in-depth study of pseudorandom numbers produced from recursive vector 
sequences was carried out in [19]. Some results of the latter paper will also be 
useful in the present work. These pseudorandom number generators include 
various interesting generators as special cases, for instance the classical GFSR 
generators and the twisted GFSR generators recently introduced by Matsumoto 
and Kurita [10]. 

In ?2 we review the known periodicity properties of sequences of pseudoran- 
dom vectors generated by the multiple-recursive matrix method, and we also 
employ concepts and results from [19] to gain further insight for the case of 
the maximum period. In ?3 we establish the lattice structure of pseudorandom 
vectors generated by the multiple-recursive matrix method. The performance of 
these pseudorandom vectors under the serial test for statistical independence is 
investigated in ?4, and general theoretical results for the full period as well as for 
parts of the period are proved. The theory of the serial test leads to the intro- 
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duction and the analysis of appropriate figures of merit in ?5. In ?6 we discuss 
the practical implications of our results and we raise some open problems. 

2. PERIODICITY PROPERTIES 

A recursive vector sequence zo, z1, ... generated by (1) is periodic, and 
from the fact that Ao is nonsingular it follows that it is even purely periodic, 
i.e., that there is no preperiod. For a purely periodic sequence ao, a1, ... of 
elements of an arbitrary set we write per(an) for its least period length. It 
is obvious from (2) that per(un) = per(zn), so that it suffices to study the 
periodicity properties of recursive vector sequences. It was already shown in 
[17] that for an mth-order recursive vector sequence zo, z1, ... in Fk we 
always have per(zn) < pkm - 1 . For practical implementations of the multiple- 
recursive matrix method the case per(z,) = pkm _ 1 of the maximum period is 
certainly of greatest interest. The following general criterion for the maximum 
period in terms of the matrices Ao, Al, ... , Am-i in (1) was established in 
[17]. We denote by Ir the r x r identity matrix over Fp . 

Lemma 1. For an mth-order recursive vector sequence zo z1, ... in F k we 
have per(zn) = pkm - 1 if and only if the polynomial 

m-l 
det xmIk _ 

rxn A 

h=0 

of degree km is a primitive polynomial over Fp. 

Recursive vector sequences with maximum period can be further character- 
ized in terms of explicit formulas, and such formulas are also instrumental for 
the deeper analysis of these sequences. Throughout the rest of the paper we use 
the abbreviation q = pkm, and we write Tr for the trace function from the 
finite field Fq to its prime subfield Fp (see [9, Definition 2.22] for the defini- 
tion of the trace). The following result from [19] characterizes recursive vector 
sequences with maximum period among all sequences in F . 

Lemma 2. Let 

Zn = (Z lSz(k) E Fpk for n = O , 1 ,... 

be an arbitrary sequence of elements of F1k. Then this sequence is an mth-order 
recursive vector sequence with per(zn) = pkm - 1 if and only if 

(3) zU) = Tr(f31an) for 1 < j < k and n > O, 

where a is a primitive element of Fq with q = pkm and the km elements 
flajai-l,1 < i < m, 1 < j < k, of Fq form a basis of Fq over Fp. 

For the moment, we consider an arbitrary field extension F/K and we note 
that F can be viewed as a vector space over K. For 0 E F and a K-linear 
subspace W of F we define OW = {0,u: ,u E W}, which is again a K-linear 
subspace of F. In the following definition we introduce subspaces of the vector 
space F over K that permit a special kind of direct-sum decomposition of F. 
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Definition 1. Let F/K be an arbitrary field extension and let a E F with 
a # 0. Then a K-linear subspace W of F is called a-splitting if for some 
m > 1 we have 

m 
F = E(i-1 W). 

i=1 

It is clear that if F/K is a finite extension and W is a a-splitting K-linear 
subspace of F of dimension k, then [F: K] = km, where m is the integer in 
Definition 1. We now apply this concept to the extension Fq/Fp with q = pkm, 
and we can then rephrase the last condition in Lemma 2 in the form given in 
the lemma below. 

Lemma 3. Let a E Fq with a 0 0, where q = pkm. Then the km elements 
f31ajAi 1<i<m, 1<j<k, of Eq formabasis of Eq over Fp if and only 
if /hl, ..., 1k form a basis of a a-splitting Fp -linear subspace of Fq. 

Consequently, we can construct an mth-order recursive vector sequence zo, 
Zi.... in Fk with per(zn) = pkm _ 1 if we start from an arbitrary primitive 
element a of Fq and an arbitrary a-splitting Fp-linear subspace W of Fq of 
dimension k and then define the sequence by (3), where (/hl ... , ,Bk) is an 
ordered basis of W. To guarantee that this construction is always possible, it 
suffices to find examples of appropriate a-splitting subspaces. 

Lemma 4. Let F/K be an arbitrary field extension and let E be an intermediate 
field such that F is a finite simple extension of E. Then for any nonzero a E F 
with F = E(a) and any nonzero 0 E F, the K-linear subspace OE of F is 
a-splitting. 
Proof. If F has degree m over E and F = E(a), then the elements ai-, 
1 < i < m, form a basis of F over E. Therefore, for a nonzero 6 E F and 
any a E F we have 

m 
0a1a = S iCi- 

i=1 

with suitable ,u/ E E, and so 
m 

a = Za' 0JLi. 
i=lI 

This means that F is the sum of the subspaces a1 OE, 1 < i < m. Using 
again the basis property of the elements ai-l, 1 < i < m, we see that F is 
the direct sum of these subspaces. a 

Theorem 1. For any prime p and for any integers k > 2 and m > 2 there 
exists a sequence uo, ul, . . . of k-dimensional pseudorandom vectors generated 
by (1) and (2) with per(un) = pkm - 1. 

Proof. We recall that per(un) = per(zn), so that it suffices to prove the anal- 
ogous result for mth-order recursive vector sequences in F1k. We choose a 
primitive element a of Fq with q = pkm, Furthermore, we apply Lemma 4 to 
the extension Fq/Fp and the intermediate field E = Fpk. Since Fq = Fpk(o), 

we obtain that for any nonzero 0 E Fq the Fp-linear subspace 6Fpk of Fq 
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of dimension k is a-splitting. Therefore, the construction described after 
Lemma 3 yields an mth-order recursive vector sequence zo, z1, ... in Fk 

with per(z,) = pkm _-1. D 

The result of Theorem 1 exhibits one of the significant advantages of the 
multiple-recursive matrix method over the matrix method, namely that for a 
given prime p and a given dimension k we can obtain arbitrarily large least 
period lengths by choosing higher-order vector recursions, whereas for the ma- 
trix method we can reach only the least period length pk _ 1 (see [16, Chapter 
10]). 

3. LATTICE STRUCTURE 

Pseudorandom vectors generated by the multiple-recursive matrix method 
possess an inherent lattice structure, just like linear congruential pseudorandom 
numbers (see Knuth [6, Chapter 3] and Ripley [20, Chapter 2]) and pseudo- 
random vectors generated by the matrix method (see Afflerbach and Grothe 
[1] and Niederreiter [16, Chapter 10]). We consider a sequence uo, uI, ... of 
k-dimensional pseudorandom vectors generated by (1) and (2) with per(un) = 
pkm - 1 =: T, i.e., with the maximum period for given p, k, and m. For a 
given dimension s we define the points 

(4) Vn = (Un, Un+l, ..., Un+s-1) E [0, l)ks for n = 0, 1,. 

For s < m we have an almost perfect equidistribution of the vn , n = 0, 1,... 
T - 1, as will be shown in Theorem 3. A nontrivial lattice structure arises for 
dimensions s > m. 

We define the k x k matrices AhJ) over Fp for 0 < h < m - I and j > 0 
by setting the initial values 

A4) -Ah for0< h < m-1, 

where the Ah are as in (1), and then using the following recursions for j > 0: 

A(j+') = AOA(i) 

AhJ+ ) = Ai) h-l+ AhA(l for 1 < h < m-1. 

For given s > m we introduce the km x k(s - m) matrix 

z AM0) A(I) A(s-m-l) 0 0 0 

A(s) - A(?) A(1) A(s-m-1) 

kAm?) A() A(s-m 1), 
AM1 A-1~ ... ____ 

which we view as a matrix over Z by identifying Fp with the set {0, 1, ... 

p - 1 } of integers. Then we define the ks x ks matrix 

G(s) _ (P Ekm P A(S)) 
V Eks- m)J 

with rational entries, where Er is the r x r identity matrix over Z. Let L(s) 
be the lattice in Rks with generator matrix G(s); that is, L(s) consists of all 
Z-linear combinations of the row vectors of G(s). 
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Theorem 2. Let uo, u1, ... be a sequence of k-dimensional pseudorandom vec- 
tors generated by (1) and (2) with per(un) = T = pkm - 1. If s > m and the 
points Vn are given by (4), then we have 

{O,Vo,Vl ... ,VT l}=L(s)n[0, 1)ks, 

where L(s) is the lattice in Rks with generator matrix G(s). 
Proof. We claim that for the row vectors Zn EFk we have 

m-i 
(5) Zn+mn+j = V'Zn+hA(i) for all j > 0 and n > O. 

h=O 

This is proved by induction on j. For j = 0 this is just (1). If (5) is true for 
some j > 0, then by the induction hypothesis and (1) we get 

m-i m-2 m-i 

Zn+m+j+l = Z Zn+h+pAh = Z Zn+h+lA( + Z Zn+hAhA(-1 
h=O h=O h=O 
m-i 

= Z Zln+hA(j+ 

h=O 

for all n > 0, and so (5) is established. It follows that 

1 
Vn -p(Zn,~ Zn+I S Zn+s-1) 

p 

-(Zn , Zn+ 1 Zn+m-1) (Ekm pA(S)) mod 

for all n > 0. This shows that all vn, and also 0, belong to the lattice L(s); 
hence 

{o, VO, V1, ..., VT-1} C L(s) n [0, l)ks. 

All standard basis vectors of Rks lie in L(s), and so Zks C L(s). Further- 
more, det(L(s)) := Idet(G(s))I = p-km, and thus L(s) n [0, I)ks contains ex- 
actly pkm points by [16, Theorem 5.30]. On the other hand, the pkm points 
0, v0, vI, ..., VT1I are distinct since per(un) = T, and so the desired result 
follows. D 

We note that det(L(s)) = p-km is independent of s, so thaL pseudorandom 
vectors generated by the multiple-recursive matrix method have in a sense a 
"coarse" lattice structure, but the "coarseness" is much less pronounced than 
for the linear congruential method or the matrix method. The lattice L(s) can 
be used to assess the quality of the sequence uo, ul, ... of pseudorandom 
vectors. This is done by computing reduced bases, Beyer quotients, and other 
characteristics of L(s); we refer to completely analogous procedures for the 
linear congruential method (Ripley [20, Chapter 2]) and the matrix method 
(Afflerbach and Grothe [1]). 

4. PERFORMANCE UNDER THE SERIAL TEST 

The statistical independence of s successive pseudorandom vectors can be 
tested by the s-dimensional serial test. Given a sequence u0, ul , ... of k- 
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dimensional pseudorandom vectors, this test amounts to studying the distribu- 
tion of the ks-dimensional points 

(6) vn = (un,uUn+I, ..., un+s-i) for n = 0, 1,... 

in the unit cube [0, 1 ]ks. We restrict attention to the case where uo, ul, ... is 
a sequence of k-dimensional pseudorandom vectors generated by (1) and (2) 
with per(un) = T = pkm 1 . Note that then the points vn are in the half-open 
unit cube [0, 1)ks 

We first consider the s-dimensional serial test for the full period. For dimen- 
sions s < m the exact distribution of the points vn in (6) from the full period 
can be determined. 

Theorem 3. Let uo, u1, ... be a sequence of k-dimensional pseudorandom vec- 
tors generated by (1) and (2) with per(un) = T = pkm - 1. If s < m, then 
among the points vO, V1, ..., VT_1 in (6) every nonzero point in [0, I)ks all of 
whose coordinates are rationals with fixed denominator p occurs with frequency 
pk(m-s), and the point 0 E [0, 1 )ks occurs with frequency pk(m-s) - 1 . 
Proof. For s = m this was shown in [17, Remark 8], and for s < m this 
follows by projecting the points vn for s = m to [0, 1)ks and counting. 0 

Theorem 3 demonstrates that for s < m the points vo, vI, ... , VT-1 show 
an almost perfect equidistribution. In general, the distribution properties of 
the points vn are measured by the notion of discrete discrepancy which was 
introduced in [18] and is defined below for the special case that is of interest to 
us. 

Definition 2. Let p be a prime and let d > 1 be an arbitrary dimension. Let 
xO, xI, ... , XN-1 be N points in [0, 1)d with the property that all their coor- 
dinates are rationals with fixed denominator p. Then the discrete discrepancy 
EN,P of the points xo, xl, ... , XN1 is defined by 

EN,p= EN,p(XO,XI, X.N. ,xN)=max 
A 

(J) - Vol(J) N 

where the maximum is taken over all subintervals of [0, 1)d of the form J = 

id=1 [ai/p, bi/p) with integers 0 < ai < bi < p for 1 < i < d and where A(J) 
is the number of integers n with 0 < n < N- I and xn E J. 

Now let uo, ul, ... be as above a sequence of k-dimensional pseudorandom 
vectors generated by (1) and (2) with per(un) = T = pkm - 1. As explained 
in [18], natural quantities for the s-dimensional serial test are the discrete dis- 
crepancies 

(7) EN,P =EN,p(VOS vl VI E VN-1) for I < N < T, 
where the points vn are given by (6). A principal theme of this and the following 
section will be the provision of upper and lower bounds for these discrepancies. 

We need the following notation. Let C(p) = (-p/2, p/2] n Z, and for a 
dimension d > 1 let Cd(p) be the set of points (hI, . .. , hd) with hi E C(p) 
for 1 < i < d and define Cd (p) = Cd(p)\{0}. For h E C(p) we put 

r(h.P) ={ | sin r if h h0 
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For h = (hi, ..., hd) E Cd(p) we define 

d 

r(h, p) = r(hi, p). 
i=l 

We write x * y for the standard inner product of x, y E Rd. 
By Lemmas 2 and 3, we can characterize the parameters for generating 

Uo, Ui, ... in the case per(un) = T = pkm - 1 by a primitive element a of Fq 
and an ordered basis B = (PI, ..., k) of a a-splitting Fp-linear subspace of 
Fq with q - pkm. Now let s > 1 be a given dimension. We write h E Ck*s(p) 
in the form h = (hi, h2, ...,h), where hi E Ck(p) for 1 < i < s and not all 
hi = 0. Furthermore, let 

(8) hi = (hil,.., hik) for I < i < s, 

where all hij E C(p). We write Z(s) (B, a) forthe set of all h = (hl, h2, ..., hs) 
E Ck*s(p) which satisfy 

s k 

Z Z 
hijljai-' = 0. 

i=l j=l 

Then we define 

(9) R(s) (B , a)- 'S1 
h EZ (s) (, a) r(h, p)' 

Now we have the following bound for the discrete discrepancy ES)P in (7). 

Theorem 4. Let uo, u1, ... be a sequence of k-dimensional pseudorandom vec- 
tors generated by (1) and (2) with per(un) = T = pkm - 1 . Then for s > 1 we 
have 

ETS)P < T 1+ T)R((B <) 

Proof. Let the points vO, ..., VT-1 E [0, l)ks be as in (6) and put 

ET3) 1P= ET+1 ,P(VO, ... ,VT-1 , 0). 

Then by [18, Lemma 1], and by setting VT = 0, we get 

1 T 

(10) T +l hCs (p) r(h, p) |T + 
1n=O 

where e(t) = e2nffT/t for real t. For fixed h E CkZ(p) consider 
T 

S(h) 1:= e(h Vn)- 
n=O 

As above, we write h = (hI, h2, ...,h) with hi E Ck(p) for 1 < i < s. Then 
T-1 T-I s 

S(h) = 1 + 1: e(h Vn) = 1 + E e E hi Un+i- I 
n=O n=O i=e 
T-1 s \ 

= 1+ Ee E hi " Zn+i-) I 
n=O i=l 
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By writing each hi as in (8) and using (3), we get 

T-1 /1s k 

S(h) = 1 + ETe ( E k hij Tr(fljan+i- 1) 
n=0 p i=l j=l 

= 1 + E e ( Tr (nE E? hij3jci1))I 

where Tr is the trace function from Fq to Fp with q = pkm. We note that 

x(a) = e(I Tr(a)) for ae E Fq defines the canonical additive character of Fq 
(compare with [9, p. 190]). Since a is a primitive element of Fq, the powers 
Cn, 0 < n < T- 1, run through the set Fq* of nonzero elements of Fq, and so 

s k 

S(h) =1 + 2 y1 X hhijfijX-I 
y E i i=1 j=l 

( s k 

=-Zx yZZhijfl | 
yEFq i=1 j=1 

From the orthogonality relations for additive characters [9, p. 192], we obtain 
that S(h) = q = T + 1 if h E Z(s)(B, a) and S(h) = 0 otherwise. In view of 
(10) and the definition of R(s)(B, a) in (9) we then get 

E(s+) < R(s) (B, ) T+1,p 

Since E(s) is the discrete discrepancy of the point set that is obtained from T,p 
the point set V0, .V. ., Vr_1, 0 by deleting 0, it is easy to see (compare with the 
proof of [16, Theorem 7.3]) that 

TE(S)p < 1 + (T + 1)E(s+)p T,p -T+p 

which implies the result of the theorem. 0 

Note that R(s)(B, a) = 0 for s < m since the sum in (9) is then empty 
on account of the basis property in Lemma 2. Now we consider the discrete 
discrepancies E(s) in (7) for 1 < N < T, i.e., for parts of the period. 

Theorem 5. Let uo, u1, ... be a sequence of k-dimensional pseudorandom vec- 
tors generated by (1) and (2) with per(un) = T = pkm _1 . Then for s > 1 and 
1 <N < T we have 

(s) < (P_ (4log T + 0.41 + 06) + 4T) G g + 7) Rs)(B, a). 

Proof. We basically follow the method in the proof of Theorem 4. First of all, 
by [18, Lemma 1] we get 

(l l) EN-1 
E(s) < -Z1:e(h .Vn) 

N,CP(-)r(h, p) N 
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For fixed h E CkZs(p) we obtain 

N-1 N-1 s k\ 

SN(h):= Ze(hvn)==Z 
e 

(Tr 
a nE hijfjcri- 

n=o n=O j=1 /-) 
N-1 I s k 

- > (cinEE? hjjflJci-1 
n=O \ i=1 j=1 

Thus, if h E Z(s)(B, a), then SN(h) = N. If h 0 Z(s)(B, ai), then by [13, 
Lemma 3] and the fact that a is a primitive element of F, we have 

ISN(h)I <pkm/2 y 2logT+ 0.41 + 61)+ N 

By combining this information with (1 1), we deduce that 

E(s) < R(s)(B, ci) + (P l (71og T + 0o.41+T)+4) hEC (p) r(h, p) 

It remains to note that 

(12) 1(h ) < (-logp +7 ) h ECkZ,(p)r(, ) i5 

by [11, Lemma 2.3]. o 

The following result provides information on how small we can make the 
quantity R(s)(B, Ca) defined in (9). Since R(s)(B, Ca) = 0 for s < m, we can 
assume s > m. 

Theorem 6. Let m < s < km. Furthermore, let a be a primitive element of Fq 
with q = pkm, let W be a c-splitting Fp-linear subspace of Fq of dimension 
k, and let R be the set of all ordered bases of W. Then for the mean value 

R carI1ka) Z R(s)(B, c) 
BE-' 

of R(s)(B, a) over q we have 

R < p -k ( ogp+ 7)ks 

Proof. From (9) we get 

card(.) BE hEZsB a)r(h, p) card(.s) h E r(h, p) B 
1. 

BEW~ hEZGs)(B, a) hECk*s(P) hEZ(s)(B, a) 

If we fix an h E Ck*s(p) and write it in the same way as prior to (9), then the 
inner sum above is equal to the number of B= (fl4, *, 1k) E g with 

s k 

ZZhijiucil = 0. 
i=1 j=1 
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If we put aj = Ei= hijai-I for 1 <j < k, then this condition can be written 
as 

k 

I ajflj = 0. 
j=l 

Since s < km the powers ai, 1 < i < s, are linearly independent over Fp 
and so aj 54 0 for at least one j with 1 < j < k. It follows that 

k-2 

E l< (Pk -pl). 
BE-V 1=0 

hEZ(s)(B a) 

Since 
k-I 

card(w) = jJ(pk _pl) 
1=0 

we obtain 

R < k h )< lp- k (logp + ) 
R< pk pkl ECI~ r(h, p) < p1 \IgP5} 

where we applied (12) in the last step. 51 

Corollary 1. Let m < s < km, let a be a primitive element of Fq with q =pkm 
and let W be a a-splitting Fp-linear subspace of Fq of dimension k. Then for 
the corresponding sequences uo, u1, ... with per(un) = T = pkm -1 we have 
on the average 

ET,P = o(Pk(logp)ks) 

with an implied constant depending only on k and s, where the average is taken 
over all ordered bases of W. 
Proof. This follows from Theorems 4 and 6. 5 

Corollary 2. Let m < s < km and let a and W be as in Corollary 1. Then for 
the corresponding sequences uo, u1, ... with per(un) = T = pkm 1 we have 
on the average 

E(s)- o( p-k(logp)ks + N- pkm/2 (log T) (logp)ks) 

for 1 < N < T with an implied constant depending only on k and s, where the 
average is taken over all ordered bases of W. 
Proof. This follows from Theorems 5 and 6. 5 

5. FIGURES OF MERIT 

In analogy with the theory for the matrix method (see [13]), we introduce a 
"figure of merit" which is a positive integer assessing the suitability of parame- 
ters in the multiple-recursive matrix method. We again restrict attention to the 
case where uo, ul, ... is a sequence of k-dimensional pseudorandom vectors 
generated by (1) and (2) with per(un) = pkm - 1 . As we have seen in Lemmas 
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2 and 3, the sequence can then be described in terms of a primitive element 
a of Fq and an ordered basis B = (PIu, ... , ,Bk) of a a-splitting Fp -linear 
subspace of Fq with q = pkm, We define the subset Z(s)(B, a) of CkZ(p) as 
in ?4. Furthermore, we put r(h) = max(1, IhI) for h E Z, and for a dimension 
d > 1 we define 

d 

r(h) =J7r(hi) for h = (hi, ,hd) E Zd. 
i=l 

Definition 3. Let a be a primitive element of Fq with q = pkm and let B be 
an ordered basis of a a-splitting Fp-linear subspace of Fq of dimension k. 
Then for s > m we define the figure of merit 

Q(s)(B, a) = min r(2h). 
hEZ(s)(B,a) 

Theorem 7. For any a and B as in Definition 3 andfor any s > m we have 

2?< (s)(B, a) < 2p 

Proof. The lower bound is trivial. To prove the upper bound, let B = (fl,.... 
1k) and note that fl1ai- I, 1 < i < m, 1 < j < k, form a basis of Fq over Fp 
by the definition of a a-splitting Fp-linear subspace of Fq. Thus, 

m k 

fl am = EE bijfljai-1 
i=1 j=1 

with suitable b1j E Fp . We can rewrite this identity in the form 
s k 

E E hijfjai-l = 0, 
i-= j=l 

where each integer hij is reduced modulo p so that it lies in (-p/2, p/2]. 
Then the corresponding h E Ck (p) belongs to Z(s) (B, a) and satisfies r(2h) < 
2pkm . 

It is an important fact that the quantity R(s)(B, a) defined in (9) can be 
bounded in terms of the figure of merit Lo(s) (B, a). 

Theorem 8. For any a and B as in Definition 3 and for any s > m we have 

(2/7r)k ) ( (2 log 2p)kS + 3(2 log 2p)ks- 
(S) (B, a) R B, ) < (log2)ks- I(s)(B, a) 

Proof. A comparison of the definitions shows that 

r(h, p) ? 7c r(2h) for all h E C(p), 

and so 
r(h, p) < (7r) kr(2h) forall hE Ck,(p). 

By Definition 3 there exists an ho E Z(s)(B, a) with r(2ho) - (s)(B, a) . Then 

R(s) (B > 1 > (2/7)kS_ (2/7)kS 
\,)-r(ho, p) -r2ho) p(s)(B, a) 
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which is the lower bound in the theorem. To prove the upper bound, we proceed 
as in the proof of [12, Theorem 5.2], but we replace the dimension s there by 
ks and the integer m by the prime p . The crucial (but simple) fact that needs 
to be used in the key steps of the argument (which go back to [ 1 1, pp. 1 17-118]) 
is the following: if h, h' E Z(s) (B, a), then h - h' is congruent mod p to an 
element of Z(s)(B, a). 0 

Corollary 3. Let uo, ul, . . . be a sequence of k-dimensional pseudorandom vec- 
tors generated by (1) and (2) with per(un) = T = pkm I1. Then for s > m we 
have 

(s) < Ci (logp)ks 
ET,P - Q(s)(B, a)' 

where the constant c1 > 0 depends only on k and s. 
Proof. This follows from Theorem 4 and the upper bounds in Theorems 7 and 
8. 0 

Corollary 4. Let uo, ul, ... be a sequence of k-dimensional pseudorandom vec- 
tors generated by (1) and (2) with per(un) = T = pkm -. Then for s> m and 
1 <N < T we have 

EN,p - NP (log T) (logp)ks + c3(logp) s 

where the constants C2 > 0 and C3 > 0 depend only on k and s. 
Proof. This follows from Theorem 5 and the upper bound in Theorem 8. 5 

Corollaries 3 and 4 provide upper bounds for the discrete discrepancies 
E(s) 1 < N < T, in terms of the figure of merit Q(s)(B, ci). In the fol- "N, p 
lowing we establish a lower bound for these discrete discrepancies in terms of 
Q(s)(B, Ca). 

Theorem 9. Let uo, uI, ... be a sequence of k-dimensional pseudorandom vec- 
tors generated by (1) and (2) with per(un) = T = pkm _1. Then for s > m and 
1 < N < T we have 

E(s) ?T 
N,P 

- 
2(7r + i)ksp(s)(B, a)' 

Proof. By [18, Lemma 3] we have 

Ze(h1 v 2 NE(s 
eN-i Vn < 7, r(P27rhi + 1) -I) NE,p 

n=O I [(i= l 

for any h = (hi, ... , hks) E Zks for which not all coordinates are divisible by 
p, where e(t) = e27t"'-I for real t. Now 

27rhl+1 < (7r+1) r(2h) 

for all integers h, and so 
N-1 2 

(13) Ze(h.-v,) ?<-(7r+ 1)ksr(2h)NE(s). 
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By Definition 3 there exists an ho E Z(-)(B, a) with r(2ho) = p(G)(B, a). The 
proof of Theorem 5 shows that 

N-1 

E e(ho*Vn) = N, 
n=O 

and together with ( 13) this yields the desired result. 51 

The bounds in Corollaries 3 and 4 and Theorem 9 demonstrate that 0 (s) (B, a) 
has to be large to guarantee small discrete discrepancies. The following result 
shows how large we can make the figure of merit. 

Theorem 10. Let m < s < km. Then there exists an effective constant d(k, s) > 
0 depending only on k and s such that the following holds: if pk-1(p - 1)> 

d(k, s), then for every primitive element a of Fq with q = pkm and every 
a-splitting Fp -linear subspace W of Fq of dimension k there exists an ordered 
basis B of W such that 

2a _ pk-i(pl) 
Q(W)(B, a) > (l )ks - with a - 2b 

where b > 0 is an effective absolute constant. 
Proof. In addition to k, m, and s we fix a and W and let 9 be the set of 
all ordered bases of W. For real t > 2 let Q(t) be the number of B E 9 with 
o(s)(B, a) < t, i.e., such that there exists an h E Z(W)(B, a) with r(2h) < t. In 
the proof of Theorem 6 we have shown that for a fixed h E Ck*s(P) the number 

of B E 9 with h E Z(s)(B, a) is at most rHiki02(pk pl) . It follows that 

k-2 

(14) Q(t) < Gks (t) ]7 (pk _ pl), 

1=0 

where Gks(t) is the number of nonzero h E Zks with r(2h) < t. Furthermore, 
by [13, equation (16)] we have 

(15) Gks(t) < bt (logt) for t> 2e4 

with an effective absolute constant b > 0. Since limuO u/(log u)ks- = 00, 

there exists c(k, s) > 0 such that 

(16) ( u - > e4 for all u > c(k, s). 
(logu)ks1-i 

Put d(k, s) = 2bc(k, s), let a be as in the theorem, and set 

2a 
(log a)kS-l 

Now assume that pkl-(p - 1) > d(k, s) . Then a > c(k, s), thus (16) implies 
to > 2e4, and so (15) yields 

Gks(to) _ bto (log 2 
- = (loga)ks - (log (loga)kSl- ) 

<2ab=pk-l(p_ 1) 
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since (16) shows that a > c(k, s) > e. Then (14) yields 
k-i 

Q(to) < fj (pk _ pl) 

1=0 

Since the number on the right-hand side is the cardinality of R, it follows 
that there exists a B E R not counted by Q(to), and so for this B we have 
Q(s)(B, a) > to. E 

6. DiscusSION 

The multiple-recursive matrix method generates k-dimensional pseudoran- 
dom vectors uo, uI, ... by an mth-order vector recursion in Fk. It extends 
the matrix method for pseudorandom vector generation, which corresponds to 
the case m = 1. For any p, k, and m we can achieve least period length 
per(un) = pkm - 1 by a suitable choice of parameters in the multiple-recursive 
matrix method, and explicit criteria can be given for this choice of parameters 
(see ?2). For fixed p and k we can thus obtain arbitrarily large least period 
lengths by choosing sufficiently large values of m. 

For dimensions s > m the nontrivial lattice structure inherent in pseudo- 
random vectors generated by the multiple-recursive matrix method is described 
in Theorem 2. In this connection, it would be of interest to carry out compu- 
tational work on the assessment of the lattices L(s) in Theorem 2. Analogous 
work for the linear congruential method and the matrix method is mentioned 
in ?3. 

The results of our analysis of the serial test for the case per(u,) = pkm - 1 
can be summarized as follows. For dimensions s < m the corresponding s- 
tuples v, of successive pseudorandom vectors are almost equidistributed over 
the full period. For dimensions s > m the order of magnitude of the discrete 
discrepancy of these s-tuples is controlled by the figure of merit (s)(B, a), 
with large values of Lo(s)(B, a) corresponding to small values of the discrete 
discrepancy. If m < s < km, then with a suitable choice of an ordered basis 
B of a given a-splitting Fp-linear subspace W of Fq (with q = pkm) of 
dimension k, a good performance under the s-dimensional serial test can be 
guaranteed. In this context we point out an interesting open problem, namely 
that of determining, say for a primitive element a of Fq, the total number of 
a-splitting Fp-linear subspaces of Fq of given dimension k. A related task is 
that of studying the average performance under the serial test if one averages 
over all these subspaces W. 

Future research on the multiple-recursive matrix method will also have to 
deal with figures of merit from the computational point of view. It would be 
useful to develop efficient algorithms for the calculation of figures of merit and 
to search for concrete parameters possessing a large figure of merit. 
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